Logistics of Earthmoving Operations
Simulation and Optimization

Jiali Fu*, Erik Uhlin*†, Erik Jenelius*, Haris Koutsopoulos*

* KTH Royal Institute of Technology, Stockholm, Sweden
† Volvo Construction Equipment, Eskilstuna, Sweden

10 June, 2014
Introduction

- a 3-year project (2011-2013) financed by Vinnova
- Collaboration between Volvo Construction Equipment (Volvo CE) and KTH
- Volvo CE is one business area of Volvo Group, and develops and manufactures equipment for the construction industry. Example of construction machinery:
 - wheel loader
 - excavator
 - articulated hauler
 - motor grader
 - etc.
Optimized Transport Solutions
Objectives

- Develop a simulation-based optimization framework to act as a sales tool to help the customers optimizing their fleet and eventually their sites
 - Create a simulation system of earthmoving logistics
 - Formulate and solve optimization problems for earthmoving operations
Simulation of Earthmoving Operations
Aim

- Design a microscopic discrete event simulation system for modeling earthmoving operations and conducting productivity estimations in terms of Total Cost of Ownership (TCO) and environmental aspects
 - A TCO analysis includes
 - total cost of acquisition
 - the operating cost
 - the productivity of a project
 - Discrete event simulation techniques are used to capture the interactions between the resources and the randomness of each of the activities
 - The microscopic model represents site operation and individual equipment at a very detailed level
The Framework of Microscopic Simulation Model

User Input
- Site & fleet configuration
 - Haulage road’s characteristics
 - Earth Characteristic
 - Equipment fleet

- Project information
 - Scope of work
 - Work schedule
 - Capital & operating costs

Microscopic Simulation Model

Simulation of equipment dynamic performance

Outputs from dynamic simulation
- Activities’ duration
- Activities’ fuel consumption

Discrete-event simulation of earthmoving logistics

Productivity report
The Output of the Discrete Event Simulation

- productivity: transported material per operating hour [ton/h]
- TCO: cost (capital & operating cost) per production unit [SEK/ton]
- queue statistics of resources
 - loading unit’s idle time due to unavailability of hauling unit, and coffee and lunch breaks
 - hauling unit’s idle time due to unavailability of loading unit, crusher capacity limit, and coffee and lunch breaks
Simulation-based Optimization of Earthmoving Operations
Aim

- Create a simulation-based optimization framework to act as a sales tool to help the customers optimize their fleet.
Optimization Problem Formulation

\[
\begin{align*}
\min & \quad \text{TCO} \\
\text{s. t.} & \quad P \geq P_{\min} \\
& \quad \sum_{l=1}^{L} \sum_{b=1}^{B_l} x_{l,b} \leq N_{\text{LU}}^{\max} \\
& \quad \sum_{h=1}^{H} y_{h} \leq N_{\text{HU}}^{\max} \\
& \quad x_{l,b} \in \{0,1,2,\ldots,N_{\text{LU}}^{\max}\} \\
& \quad y_{h} \in \{0,1,2,\ldots,N_{\text{HU}}^{\max}\}
\end{align*}
\]

\(P \): the production rate (tonne/h)
\(P_{\min} \): the given minimum production rate
\(N_{\text{LU}}^{\max} \): the maximum number of loading units
\(N_{\text{HU}}^{\max} \): the maximum number of hauling units
\(x_{l,b} \): the integer variable representing the number of loading unit of model \(l \) with bucket size \(b \)
\(y_{h} \): the integer variable refers to the number of hauling unit model \(h \)
New project (2014-2016)

New application approved by VINNOVA: Lean Earthmoving in Dynamic Environments (2014-2016)

- focus on the lifetime of earthworks
- construction projects are highly dynamic and the working environment at the construction sites is re-configured constantly
Thank You and Questions?